Click or drag to resize
MultipleRegressionSvdT Method (Matrix`1T, Matrix`1T)
Find the model parameters β such that X*β with predictor X becomes as close to response Y as possible, with least squares residuals. Uses a singular value decomposition and is therefore more numerically stable (especially if ill-conditioned) than the normal equations or QR but also slower.

Namespace: MathNet.Numerics.LinearRegression
Assembly: MathNet.Numerics (in MathNet.Numerics.dll) Version: 3.7
Syntax
C#
public static Matrix<T> Svd<T>(
	Matrix<T> x,
	Matrix<T> y
)
where T : struct, new(), IEquatable<T>, IFormattable

Parameters

x
Type: MatrixT
Predictor matrix X
y
Type: MatrixT
Response matrix Y

Type Parameters

T

Return Value

Type: MatrixT
Best fitting vector for model parameters β
See Also