Click or drag to resize
F# Frame extensionsStatic Method
Overload List
  NameDescription
Public methodStatic memberStaticT(T)
Create data frame from a 2D array of values. The first dimension of the array is used as rows and the second dimension is treated as columns. Rows and columns of the returned frame are indexed with the element's offset in the array. ## Parameters - `array` - A two-dimensional array to be converted into a data frame [category:Frame construction]
Public methodStatic memberStaticC, a, R(IEnumerableTupleC, a)
Creates a frame from a sequence of column keys and column series pairs. The column series can contain values of any type, but it has to be the same for all the series - if you have heterogenously typed series, use `=?>`. [category:Frame construction]
Public methodStatic memberStaticT(IEnumerableT)
Creates a data frame from a sequence of any .NET objects. The method uses reflection over the specified type parameter `'T` and turns its properties to columns. [category:Frame construction]
Public methodStatic memberStaticR(IEnumerableR)
Creates a frame with the specified row keys, but no columns (and no data). This is useful if you want to build a frame gradually and restrict all the later added data to a sequence of row keys known in advance. [category:Frame construction]
Public methodStatic memberStaticR, d, C(IEnumerableTupleR, d)
Creates a frame from a sequence of row keys and row series pairs. The row series can contain values of any type, but it has to be the same for all the series - if you have heterogenously typed series, use `=?>`. [category:Frame construction]
Public methodStatic memberStatice, K, V(IEnumerablee)
Creates a frame with ordinal Integer index from a sequence of rows. The column indices of individual rows are unioned, so if a row has fewer columns, it will be successfully added, but there will be missing values. [category:Frame construction]
Public methodStatic memberStaticR, C, V(IEnumerableTupleR, C, V)
Create a data frame from a sequence of tuples containing row key, column key and a value. [category:Frame construction]
Public methodStatic memberStaticC, b, R(SeriesC, b)
Creates a frame from a series that maps column keys to a nested series containing values for each column. [category:Frame construction]
Public methodStatic memberStaticK, R(SeriesK, R)
Creates a data frame from a series containing any .NET objects. The method uses reflection over the specified type parameter `'T` and turns its properties to columns. [category:Frame construction]
Public methodStatic memberStaticR, c, C(SeriesR, c)
Creates a frame from a series that maps row keys to a nested series containing values for each row. [category:Frame construction]
Public methodStatic memberStaticR(IEnumerable, String)
Creates a data frame from a sequence of any .NET objects. The method uses reflection over the specified type parameter `'T` and turns its properties to columns. [category:Frame construction]
Public methodStatic memberStatic(Stream, FSharpOptionBoolean, FSharpOptionBoolean, FSharpOptionInt32, FSharpOptionString, FSharpOptionString, FSharpOptionString, FSharpOptionInt32, FSharpOptionString)
Load data frame from a CSV file. The operation automatically reads column names from the CSV file (if they are present) and infers the type of values for each column. Columns of primitive types (`int`, `float`, etc.) are converted to the right type. Columns of other types (such as dates) are not converted automatically. ## Parameters * `stream` - Specifies the input stream, opened at the beginning of CSV data * `hasHeaders` - Specifies whether the input CSV file has header row * `inferTypes` - Specifies whether the method should attempt to infer types of columns automatically (set this to `false` if you want to specify schema) * `inferRows` - If `inferTypes=true`, this parameter specifies the number of rows to use for type inference. The default value is 100. * `schema` - A string that specifies CSV schema. See the documentation for information about the schema format. * `separators` - A string that specifies one or more (single character) separators that are used to separate columns in the CSV file. Use for example `";"` to parse semicolon separated files. * `culture` - Specifies the name of the culture that is used when parsing values in the CSV file (such as `"en-US"`). The default is invariant culture. * `maxRows` - The maximal number of rows that should be read from the CSV file. * `missingValues` - An array of strings that contains values which should be treated as missing when reading the file. The default value is: "NaN"; "NA"; "#N/A"; ":"; "-"; "TBA"; "TBD". [category:Input and output]
Public methodStatic memberStatic(TextReader, FSharpOptionBoolean, FSharpOptionBoolean, FSharpOptionInt32, FSharpOptionString, FSharpOptionString, FSharpOptionString, FSharpOptionInt32, FSharpOptionString)
Load data frame from a CSV file. The operation automatically reads column names from the CSV file (if they are present) and infers the type of values for each column. Columns of primitive types (`int`, `float`, etc.) are converted to the right type. Columns of other types (such as dates) are not converted automatically. ## Parameters * `reader` - Specifies the `TextReader`, positioned at the beginning of CSV data * `hasHeaders` - Specifies whether the input CSV file has header row * `inferTypes` - Specifies whether the method should attempt to infer types of columns automatically (set this to `false` if you want to specify schema) * `inferRows` - If `inferTypes=true`, this parameter specifies the number of rows to use for type inference. The default value is 100. * `schema` - A string that specifies CSV schema. See the documentation for information about the schema format. * `separators` - A string that specifies one or more (single character) separators that are used to separate columns in the CSV file. Use for example `";"` to parse semicolon separated files. * `culture` - Specifies the name of the culture that is used when parsing values in the CSV file (such as `"en-US"`). The default is invariant culture. * `maxRows` - The maximal number of rows that should be read from the CSV file. * `missingValues` - An array of strings that contains values which should be treated as missing when reading the file. The default value is: "NaN"; "NA"; "#N/A"; ":"; "-"; "TBA"; "TBD". [category:Input and output]
Public methodStatic memberStatic(String, FSharpOptionBoolean, FSharpOptionBoolean, FSharpOptionInt32, FSharpOptionString, FSharpOptionString, FSharpOptionString, FSharpOptionInt32, FSharpOptionString)
Load data frame from a CSV file. The operation automatically reads column names from the CSV file (if they are present) and infers the type of values for each column. Columns of primitive types (`int`, `float`, etc.) are converted to the right type. Columns of other types (such as dates) are not converted automatically. ## Parameters * `path` - Specifies a file name or an web location of the resource. * `hasHeaders` - Specifies whether the input CSV file has header row * `inferTypes` - Specifies whether the method should attempt to infer types of columns automatically (set this to `false` if you want to specify schema) * `inferRows` - If `inferTypes=true`, this parameter specifies the number of rows to use for type inference. The default value is 100. * `schema` - A string that specifies CSV schema. See the documentation for information about the schema format. * `separators` - A string that specifies one or more (single character) separators that are used to separate columns in the CSV file. Use for example `";"` to parse semicolon separated files. * `culture` - Specifies the name of the culture that is used when parsing values in the CSV file (such as `"en-US"`). The default is invariant culture. * `maxRows` - The maximal number of rows that should be read from the CSV file. * `missingValues` - An array of strings that contains values which should be treated as missing when reading the file. The default value is: "NaN"; "NA"; "#N/A"; ":"; "-"; "TBA"; "TBD". [category:Input and output]
Public methodStatic memberStaticR(String, String, FSharpOptionBoolean, FSharpOptionBoolean, FSharpOptionInt32, FSharpOptionString, FSharpOptionString, FSharpOptionString, FSharpOptionInt32, FSharpOptionString)
Load data frame from a CSV file. The operation automatically reads column names from the CSV file (if they are present) and infers the type of values for each column. Columns of primitive types (`int`, `float`, etc.) are converted to the right type. Columns of other types (such as dates) are not converted automatically. ## Parameters * `path` - Specifies a file name or an web location of the resource. * `indexCol` - Specifies the column that should be used as an index in the resulting frame. The type is specified via a type parameter, e.g. use `Frame.ReadCsv<int>("file.csv", indexCol="Day")`. * `hasHeaders` - Specifies whether the input CSV file has header row * `inferTypes` - Specifies whether the method should attempt to infer types of columns automatically (set this to `false` if you want to specify schema) * `inferRows` - If `inferTypes=true`, this parameter specifies the number of rows to use for type inference. The default value is 0, meaninig all rows. * `schema` - A string that specifies CSV schema. See the documentation for information about the schema format. * `separators` - A string that specifies one or more (single character) separators that are used to separate columns in the CSV file. Use for example `";"` to parse semicolon separated files. * `culture` - Specifies the name of the culture that is used when parsing values in the CSV file (such as `"en-US"`). The default is invariant culture. * `maxRows` - The maximal number of rows that should be read from the CSV file. * `missingValues` - An array of strings that contains values which should be treated as missing when reading the file. The default value is: "NaN"; "NA"; "#N/A"; ":"; "-"; "TBA"; "TBD". [category:Input and output]
Top
See Also